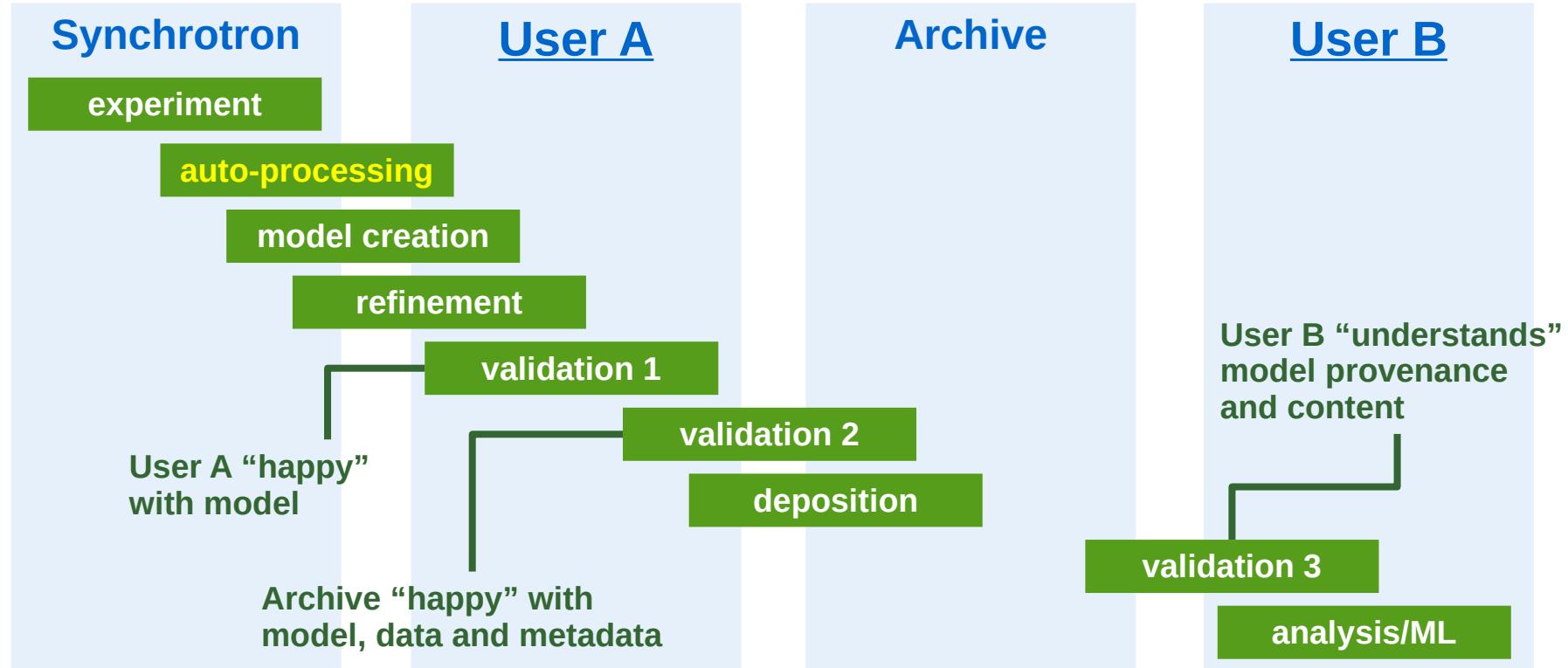
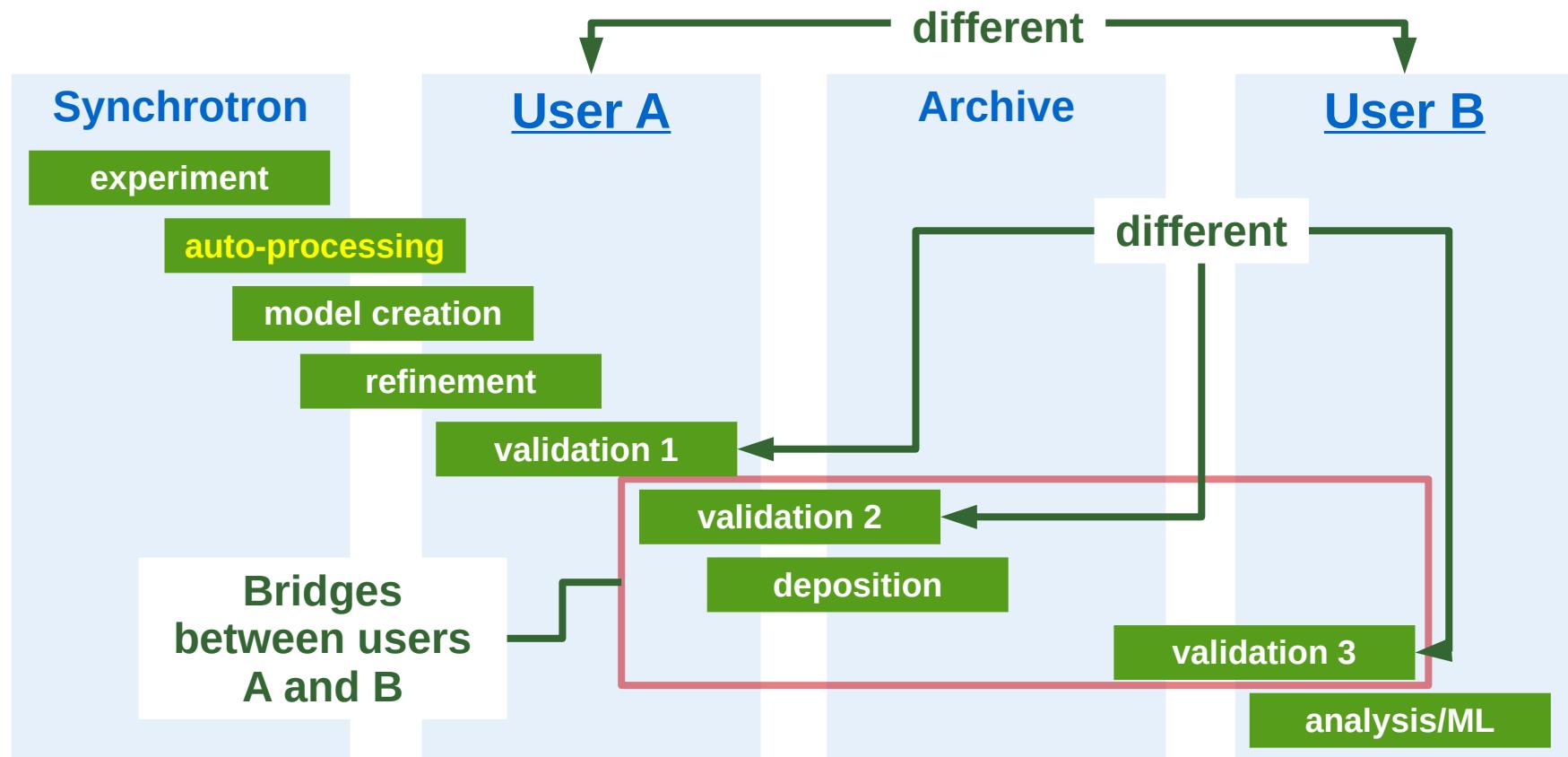
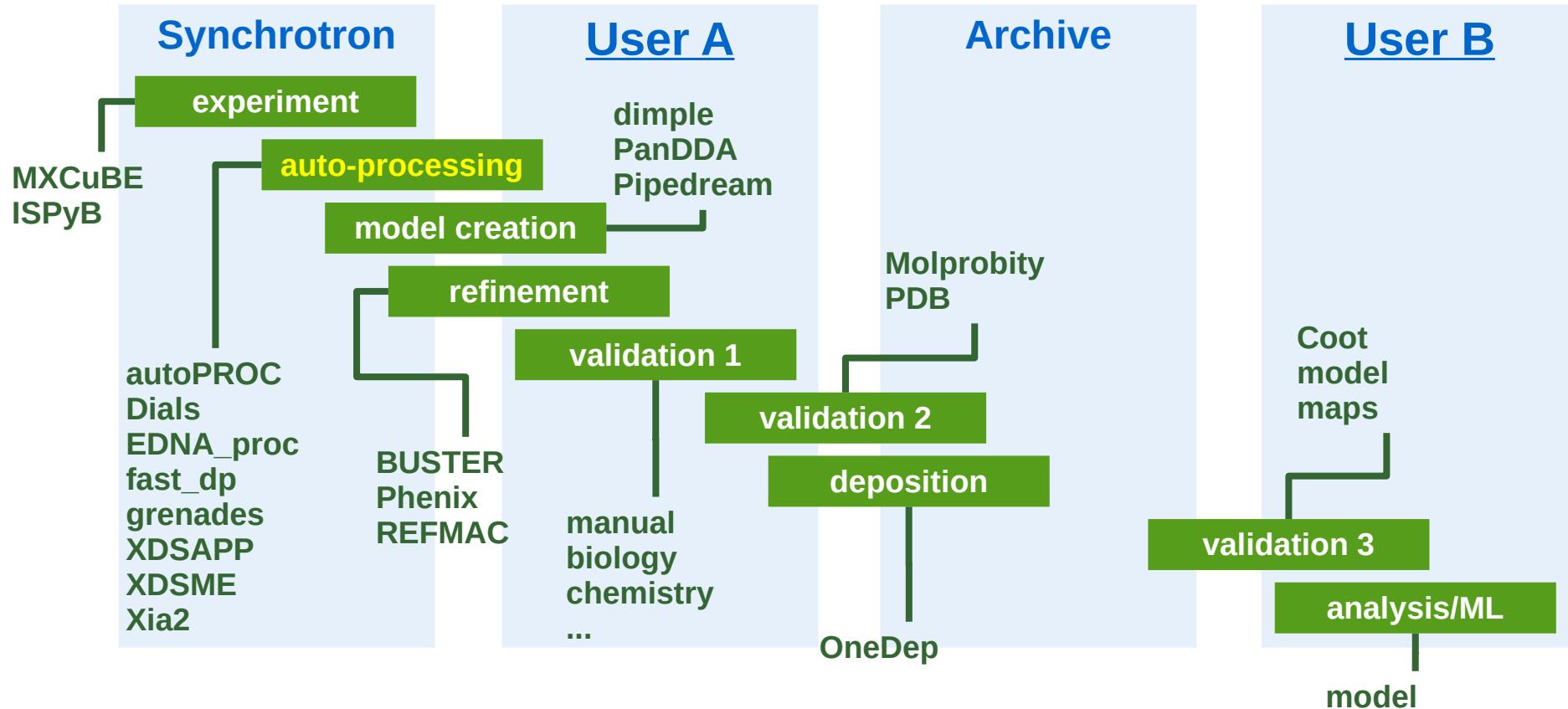

Standardising (auto-)processing and access to its results while avoiding Procrustean beds

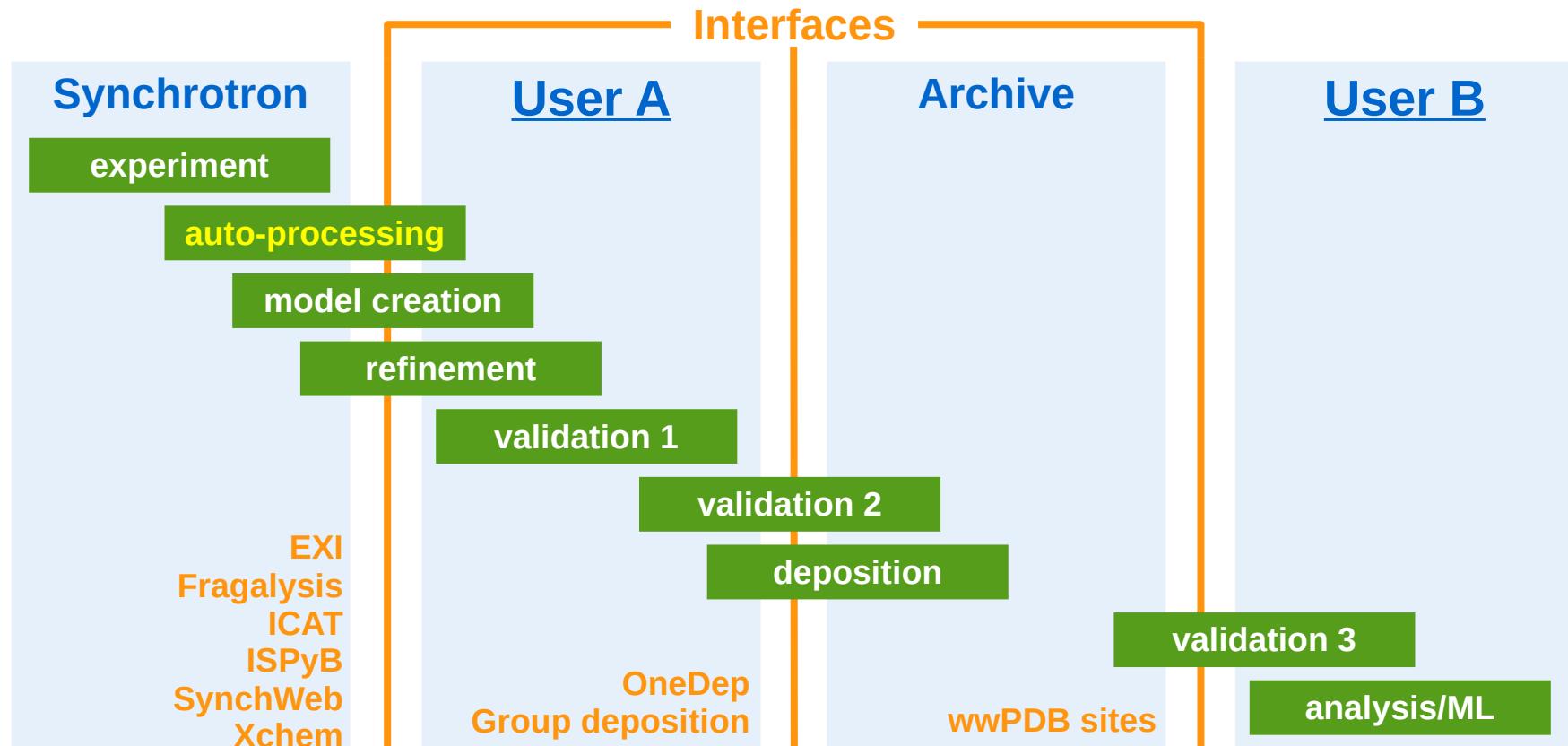
MXCuBE/ISPyB Scientific Day


Nov 18, 2025

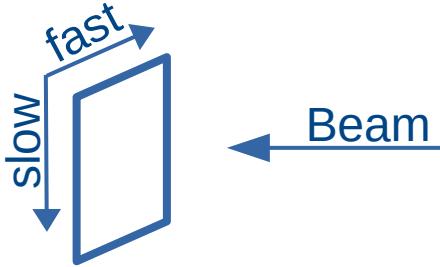
A possible (simple) view from user(s) perspective






Some small complication

Some small complication


- Standardisation of raw data:
 - “**transferability of processing**”
 - data producer (**user A**) can process data seamlessly at home ... N years later
 - archive user (**user B**) can re-process data at any time in the future
- Standardisation of auto-processing pipelines run at synchrotrons:
 - running each pipeline optimally
 - “**does exactly what it says on the tin**”
 - at least for those processing packages that have generic releases available to anyone
- Standardising presentation of pipeline results to users:
 - **taking advantage of each pipeline’s strength**
 - data producer (**user A**) can make informed decision during the experiment (fast feedback)
 - data producer (**user A**) can decide to take auto-processed reflection data (or not)
 - if at some point also processing results are made public: **user B** can see full details of auto-processing

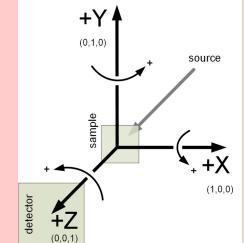
It's all in the metadata:

- **mini-cbf** and **HDF5** the de-facto standards for MX diffraction data
 - **mini-cbf** are simple (**one file per image**) for processing, with a short ASCII header - but lack organisation of multiple related datasets apart from file naming conventions or directory structures
 - great working format
 - **HDF5** are more complicated for processing (XDS plugins, separate pixel mask, various compression filters) - but **rich in metadata** possibilities (e.g. ASCII/UTF8 variable/fixed size strings null-padded or not)
 - great metadata and archiving format
- For “transferability” of processing we require a **complete description of the instrument and experiment** in a format widely supported by different processing and helper packages.

Right-hand rules for coordinate system and rotation axis

A “natural” coordinate system could start with the **detector axes** and then define **goniostat** accordingly:

detector X axis	= (1, 0, 0)
detector Y axis	= (0, 1, 0)
incident beam	= (0, 0, 1)



Any reference coordinate system could do (e.g. in XDS), but **HDF5 files following the “HDMR Gold Standard” (i.e. NeXus NXmx) need to use the McSTAS coordinate system.**

<https://doi.org/10.1107/S2052252520008672>

<https://manual.nexusformat.org/design.html#the-nexus-coordinate-system>

<https://manual.nexusformat.org/classes/applications/NXmx.html>


```
# Wavelength 1.3418 Å
# Detector_distance 0.07000 m
# Beam_xy (698.0,548.0) pixels
# Detector_2theta -0.00000 deg.
# Phi 114.43561 deg.
# Phi_increment 0.00000 deg.
# Omega 214.43735 deg.
# Omega_increment -0.20000 deg.
# Kappa -70.52043 deg.
# Kappa_increment 0.00000 deg.
# Oscillation_axis OMEGA
# Rotation_axis_vector 0.0 1.0 0.0
# Start_angle 214.43735 deg.
# Angle_increment -0.20000 deg.
# Detector_fast_axis_vector 1.0 0.0 0.0
# Detector_slow_axis_vector 0.0 1.0 0.0
# Incident_beam_vector 0.0 0.0 1.0
# Omega_axis_vector 0.0 1.0 0.0
# Kappa_axis_vector 0.0 0.64279 0.76604
# Phi_axis_vector 0.0 1.0 0.0
# 2Theta_axis_vector 0.0 1.0 0.0
```

- **v2.0 (26th Oct 2021)** specification added full instrument definition to mini-cbf headers: work between Rigaku, Global Phasing and Dectris
- This allows e.g. autoPROC to read a full instrument and experiment specification (as needed for processing) - similar to what HDF5 ("Gold Standard", NXmx) provides.
- If providing mini-cbf: think of moving to v2.0 if possible!
- Avoids guesswork ...

- Some are **intended for fast feedback**, e.g. fast_dp:
 - spot search using a small subset of images
 - allows 50% unindexed spots in single IDXREF
 - runs single INTEGRATE in P1
 - merges P1-integrated data in most likely SG
- Some are trying to get **best data with as much analysis as possible**, e.g. autoPROC:
 - spot search using all images
 - iterative indexing (detect multiple lattices, ice-rings)
 - first INTEGRATE in P1, SG determination and re-running INTEGRATE with most likely SG, updated parameters, better mosaicity estimate etc
 - Scaling in AIMLESS and analysis with STARANISO
 - HTML, PDF, PDBx/mmCIF, lots of plots and explanations
- **Different purposes at different times** (decision making while collecting data, or taking data into refinement and ultimately OneDep deposition)

Avoiding lowest common denominator

- Different auto-processing pipelines have different emphasis, different feature sets and different “added value”:
 - **also useable offline at home**: autoPROC, Dials, fast_dp, XDSAPP, XDSme, Xia2, ...
 - purely onsite: EDNA-proc, grenades, ...
- Each pipeline should ideally be **run as intended by the pipeline developers**:
 - running in non-default or not recommended mode will give wrong impression to users
 - if things behave poorly, users will blame the pipeline and their developers (and not the synchrotron/beamline/IT)
- Scraping logfiles is to be avoided - especially for pipelines that produce rich metadata in standard formats (**ISPyB-compatible XML, PDBx/mmCIF**)
 - if something is missing/incorrect: better to fix at source
 - looking at logfiles error-prone and potentially completely wrong
 - rushed patches have a tendency to stay for decades

ANOM/NOANOM - confused historical baggage

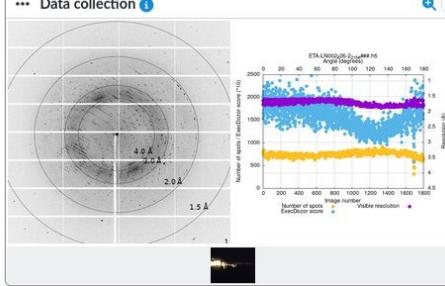
- One can **always** output anomalous reflection data I(+)/SIGI(+), I(-)/SIGI(-) and DANO/SIGDANO alongside IMEAN/SIGIMEAN at the final merging step
- Special treatment of anomalous data during scaling (to maximise the anomalous signal) and/or outlier rejection (to avoid rejecting large difference measurements) only makes sense with **very large anomalous signal, high multiplicity and an explicit phasing experiment**:
 - as a default for any experiment it never made a lot of sense to me
 - in the age of AlphaFold (and MR) this should **definitely not be a default**
- Beware: FRIEDEL'S_LAW= FALSE in XDS changes the definition of a “unique reflection” for correction factors as well as completeness, R-values, (CC1/2) statistics etc (in CORRECT and XSCALE):
 - we might get lower completeness, lower I/sigI (merged reflections), lower R-values, higher ISa (unmerged reflections) in CORRECT.LP
 - the statistics in CORRECT/XSCALE pretend that reciprocal space has no inversion centre
 - what we are interested in: describing the data used downstream - ultimately in refinement, i.e. IMEAN/SIGIMEAN. And those will be more accurate when FRIEDEL'S_LAW= TRUE.
 - we are not trying to push one or several metrics into a more favourable region (high ISa deemed good, lower Rmeas better etc)
 - MRFANA unaffected: the definitions are not changed
- Solution:
 - **always use FRIEDEL'S_LAW= FALSE** in XDS/XSCALE pipelines (apart from XDSConv if that is used to merge data and go from intensities to amplitudes)
 - or: use a program like MRFANA to compute all merging statistics consistently (well defined definitions, control over binning etc)

- based on **scaled+unmerged** reflection data
 - after outlier/misfits removal
 - measurements that go into inverse-variance weighted merging
 - **XDS_ASCII.HKL, XSCALE.HKL, unmerged MTZ** from AIMLESS or dials.scale
- Traditionally done in **bins** (resolution shells):
 - **correct comparison between pipelines would require identical binning**
 - not possible for Overall and Outer shells if using scaled+unmerged data after applying a data cutoff (since each pipeline might employ a different method for deciding on those cut-offs - for very good reasons)
 - always possible for low-resolution bin (but be aware of beamstop masking differences): could “standardise” on a resolution range?
 - some tricky details (resolution depends on unit cell - and since each processing will result in a slightly different unit cell, slightly different Miller indices will make it into a specific bin ... or not)
 - even if overcoming those difficulties: one can always sort pipeline results (numerical comparisons are neutral) - but this requires a single value to sort on ... and assigning a preference to one over the other is misleading:
 - is **(CC1/2=0.999, <I/sigI=22.4>)** better than **(CC1/2=0.998, <I/sigI=22.5>)**?
- Sorting/labeling pipeline results is extremely complicated:
 - probably better to follow the “neutral” DLS approach: first come, first serve (i.e. sorted by “speed of results”)

Synchrotron to User A interfaces - ESRF

Is the need to provide a “Best auto processing” annotation driven by user request or by internal accounting needs ... or just historical baggage?

Overall, inner- or outer-shell statistics often influenced e.g. by binning, smoothing, ice-rings and anisotropy.


As far as we can see, a user can't select a combination of criteria (as has been possible in MRFANA since 2010).

Auto processing ranking
We use the following criteria by order of priority:

1. Matches all set filter cutoffs
2. Highest symmetry space group Enabled
3. Selected criteria
 - Overall
 - I/s(l)
 - Compl.
 - Res. low
 - Res. high
 - Rmeas
 - I/s(l)
 - cc1/2
 - ccAno

11/06/2025 09:53:14 MXPressA: X-centre, eEDNA + dc on id30a1

... Data collection

... Best auto processing

From XIA2_DIALS
Monoclinic system (P21)

$a=58.8 \text{ \AA}$ $b=98.6 \text{ \AA}$ $c=59.9 \text{ \AA}$
 $\beta=97.5^\circ$

	Compl.	Res. low	Res. high	Rmeas	I/s(l)	cc1/2	ccAno
inner	100.00%	98.72	6.07	37.13	31.29	0.19	-
outer	51.36%	2.28	2.24	67.02	11.09	0.06	-
overall	97.58%	98.63	2.24	42.04	19.67	0.24	-

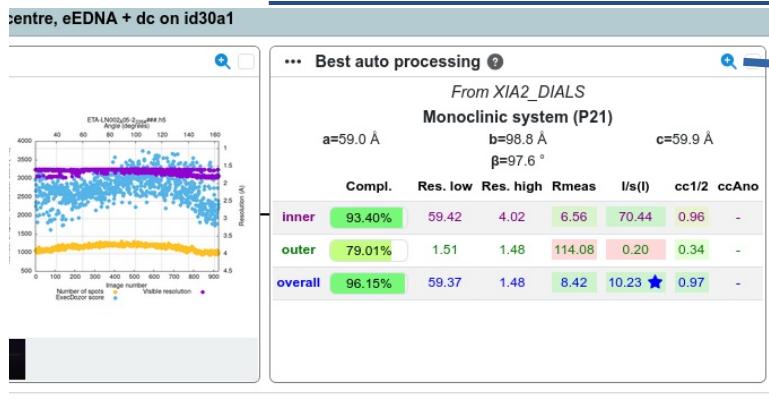
... Best MR phasing

PHASING

Best RFZ 13.4
Best TFZ 35.2

LLG 22901.459
Search model 1IKQ

Auto processing ranking


	Program	a,b,c (\text{\AA})	α, β, γ (\text{^\circ})	Compl.	Res. low	Res. high	Rmeas	I/s(l)	cc1/2	ccAno	
...	11/06/2025 10:08 XIA2_DIALS P21	58.8	90.0	inner 100.00%	98.72	6.07	37.13	31.29	0.19	0.06	2.2 \text{ \AA}
		98.6	97.5	outer 51.36%	2.28	2.24	67.02	11.09	0.06	0.06	2.2 \text{ \AA}
		59.9	90.0	overall 97.58%	98.63	2.24	42.04	19.67	0.24	0.24	2.2 \text{ \AA}
...	11/06/2025 10:08 grenades_fastproc P2	58.9	90.0	inner 96.50%	98.57	8.88	4.20	34.80	0.99	-	1.6 \text{ \AA}
		98.6	97.6	outer 97.50%	1.65	1.62	117.10	1.10	0.56	-	1.6 \text{ \AA}
		59.9	90.0	overall 99.30%	98.57	1.62	5.50	13.20	1.00	1.00	1.6 \text{ \AA}
...	11/06/2025 10:01 trimmed_grenades_fastproc P2	58.9	90.0	inner 96.80%	98.57	8.67	4.20	35.20	1.00	-	1.6 \text{ \AA}
		98.6	97.6	outer 54.20%	1.61	1.58	107.90	1.10	0.58	-	1.6 \text{ \AA}
		59.9	90.0	overall 97.20%	98.57	1.58	5.50	13.10	1.00	1.00	1.6 \text{ \AA}
...	11/06/2025 10:15 autoPROC_staraniso P21	58.9	90.0	inner 99.90%	59.39	4.43	8.70	22.20	0.95	-	1.7-1.4 \text{ \AA}
		98.7	97.6	outer 64.10%	1.60	1.7	1.7	1.4	1.60	0.51	1.7-1.4 \text{ \AA}
		59.9	90.0	overall 94.50%	59.39	1.7	1.7	1.4	10.30	0.98	-
...	11/06/2025 10:15 autoPROC P21	58.9	90.0	inner 99.90%	59.39	4.20	8.00	22.00	0.96	-	1.6 \text{ \AA}
		98.7	97.6	outer 99.90%	1.57	1.55	164.30	0.80	0.41	-	1.6 \text{ \AA}
		59.9	90.0	overall 99.90%	59.39	1.55	7.90	9.00	0.98	0.98	1.6 \text{ \AA}
...	11/06/2025 10:00 EDNA_proc P21	58.9	90.0	inner 97.40%	44.68	5.23	3.90	33.00	1.00	-	1.4 \text{ \AA}
		98.6	97.6	outer 57.40%	1.40	1.35	1855.20	0.10	-0.07	-	1.4 \text{ \AA}
		59.9	90.0	overall 92.20%	44.68	1.35	6.60	8.10	1.00	1.00	1.4 \text{ \AA}

The “best” auto processing is the one that extracts all available signal accurately.

How does one measure that?

We have access to a small number of synchrotron interfaces - thanks for that possibility!

User guidance: "best" data processing

Auto processing ranking

	Program	a,b,c (Å)	$\alpha, \beta, \gamma (^{\circ})$	Compl.	Res. low	Res. high	Rmeas	I/s(I)	cc1/2	ccAno
...	11/06/2025 11:16 XIA2_DIALS P21	59.0 98.8 59.9	90.0 97.6 90.0	inner outer overall	93.40% 79.01% 96.15%	59.42 1.51 59.37	4.02 1.48 1.48	6.56 114.08 8.42	70.44 0.20 10.23	0.96 ★ 0.97
...	11/06/2025 11:19 autoPROC_staraniso P21	59.1 98.9 60.0	90.0 97.6 90.0	inner outer overall	92.80% 65.40% 91.90%	59.46 1.58 59.46	4.38 1.8 1.7 1.4 7.00	8.70 72.40 9.20	19.20 1.60 ★ 0.98	0.95
...	11/06/2025 11:11 EDNA_proc P21	59.0 98.8 59.9	90.0 97.6 90.0	inner outer overall	90.30% 98.20% 96.60%	44.74 1.58 44.74	5.93 1.53 1.53	5.00 181.90 6.90	24.50 0.60 8.40	0.99 ★ 1.00
...	11/06/2025 11:18 autoPROC P21	59.1 98.9 60.0	90.0 97.6 90.0	inner outer overall	93.10% 98.50% 97.20%	59.46 1.55 59.46	4.14 1.52 1.52	7.90 147.50 7.30	19.30 0.60 7.70	0.95 ★ 0.98

1.5 Å
1.8 - 1.4 Å
1.5 Å
1.5 Å

“Operational resolution”

- How many merged reflections with signal ($I/\text{sig}(I) \geq 2$)?
- What sphere in reciprocal space would they fill (for given crystal symmetry)?
- What is the radius of that sphere?

#	pipeline	opres
01	XIA2_DIALS	2.039
02	autoPROC_staraniso	1.809
03	EDNA_proc	1.831
04	autoPROC	1.799

#	no LL-removal	R/Rfree with LL-removal
01	0.2082/0.2397	0.1952/0.2251
02	0.1806/0.2082	0.1790/0.2065
03	0.1835/0.2150	0.1828/0.2141
04	0.1820/0.2108	0.1803/0.2083

BUSTER/aB_autorefine with same (sub)set of reflections

MX & CryoEM - Complimentary methods

total number of PDB entries = 241922 (Sep 2025)

X-Ray crystallography	= 197707 (81.7%)
Cryo-EM	= 28918 (12.0%)
Electron diffraction	= 273 (0.1%)
NMR	= 14421 (6.0%)

total number of PDB entries with the concept of "resolution" (X-Ray, cryo-EM and ED) = 226898

Resolution	X-Ray			cryo-EM			ED			
	#PDB	#PDB	%total	%method	#PDB	%total	%method	#PDB	%total	%method
- 4.0	7212	1304	18.1	0.7	5882	81.6	20.3	26	0.4	9.5
4.0 - 3.0	29339	13940	47.5	7.1	15363	52.4	53.2	36	0.1	13.2
3.0 - 2.5	38694	32709	84.5	16.5	5945	15.4	20.6	40	0.1	14.7
2.5 - 2.0	61089	59534	97.5	30.1	1510	2.5	5.2	45	0.1	16.5
2.0 - 1.5	68286	68055	99.7	34.4	195	0.3	0.7	36	0.1	13.2
1.5 - 1.0	21090	21011	99.6	10.6	11	0.05	0.04	68	0.3	24.9
1.0 -	1173	1153	98.3	0.6	0	0.0	0.0	20	1.7	7.3
Total	226883	197706	(=87.1%)		28906	(=12.7%)		271	(=0.001%)	

MX & CryoEM - Complimentary methods

total number of PDB entries = 241922 (Sep 2025)

X-Ray crystallography	= 197707 (81.7%)
Cryo-EM	= 28918 (12.0%)
Electron diffraction	= 273 (0.1%)
NMR	= 14421 (6.0%)

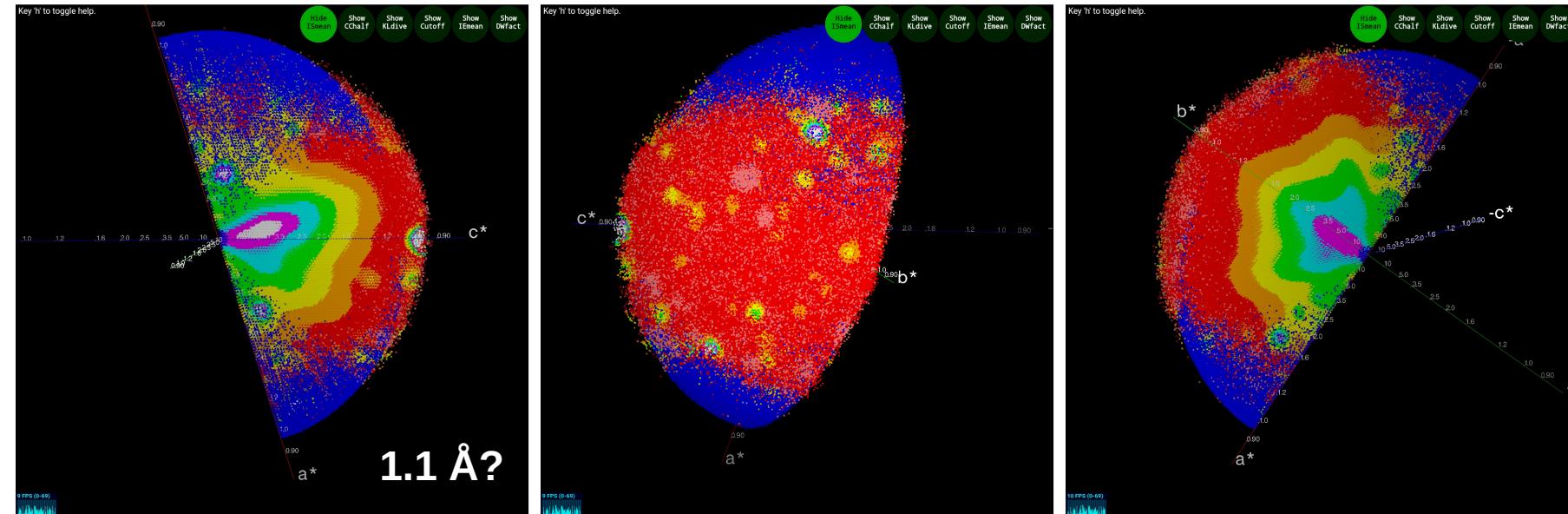
total number of PDB entries with the concept of "resolution" (X-Ray, cryo-EM and ED) = 226898

Resolution	X-Ray			cryo-EM			ED			
	#PDB	#PDB	%total	%method	#PDB	%total	%method	#PDB	%total	%method
- 4.0	7212	1304	18.1	0.7	5882	81.6	20.3	26	0.4	9.5
4.0 - 3.0	29339	13940	47.5	7.1	15363	52.4	53.2	36	0.1	13.2
3.0 - 2.5	38694	32709	84.5	16.5	5945	15.4	20.6	40	0.1	14.7
2.5 - 2.0	61089	59534	97.5	30.1	1510	2.5	5.2	45	0.1	16.5
2.0 - 1.5	68286	68055	99.7	34.4	195	0.3	0.7	36	0.1	13.2
1.5 - 1.0	21090	21011	99.6	10.6	11	0.05	0.04	68	0.3	24.9
1.0 -	1173	1153	98.3	0.6	0	0.0	0.0	20	1.7	7.3
Total	226883	197706	(=87.1%)		28906	(=12.7%)		271	(=0.001%)	

MX & CryoEM - Complimentary methods

total number of PDB entries = 241922 (Sep 2025)

X-Ray crystallography	= 197707 (81.7%)
Cryo-EM	= 28918 (12.0%)
Electron diffraction	= 273 (0.1%)
NMR	= 14421 (6.0%)


**Snapshot of current state
of depositions!**

total number of PDB entries with the concept of "resolution" (X-Ray, cryo-EM and ED) = 226898

Resolution	X-Ray			cryo-EM			ED			
	#PDB	#PDB	%total	%method	#PDB	%total	%method	#PDB	%total	%method
- 4.0	7212	1304	18.1	0.7	5882	81.6	20.3	26	0.4	9.5
4.0 - 3.0	29339	13940	47.5	7.1	15363	52.4	53.2	36	0.1	13.2
3.0 - 2.5	38694	32709	84.5	16.5	5945	15.4	20.6	40	0.1	14.7
2.5 - 2.0	61089	59534	97.5	30.1	1510	2.5	5.2	45	0.1	16.5
2.0 - 1.5	68286	68055	99.7	34.4	195	0.3	0.7	36		
1.5 - 1.0	21090	21011	99.6	10.6	11	0.05	0.04	68		
1.0 -	1173	1153	98.3	0.6	0	0.0	0.0	20		
Total	226883	197706	(=87.1%)		28906	(=12.7%)		271		

In X-Ray crystallography (MX)
we are looking for detailed
chemical information with
high accuracy.

Latest “high resolution” micro ED SSX (9FY7)

Everything is tuned towards achieving that “high resolution” label:

- As a proxy for “high quality”?
- Is that the tail wagging the dog?

- Auto-processing **pipelines are different**
 - for very good reasons
 - standardisation does not mean making them similar again
 - each pipeline should behave as intended by its developers
- **Associating a label (“best”) to auto-processing results is complicated**
 - neutral sorting seems better
 - “operational resolution”
- Chasing the “high resolution” **badge**
 - much more complex than just scraping a value out of a logfile
 - introduces a lot of bias (and tendency to brush the ugly bits under the carpet)
- Devil in the **details**
 - Synchrotron-agnostic developers/experts can provide added value